MAC10 Series Digital controller

Instruction Manual

Thank you for purchasing SHIMAX product. Please check that the product is the one you ordered. Please operate after you read the instruction manual and fully understand it.

Notice: Please ensure that this manual is given to the final user of the instrument.

Contents

Preface $\cdot 2$

1. Matters regarding safety $\cdot 2$
2. Introduction 2
2-1. Check before use 2
2-2. Caution for use $\cdot 2$
3. Installation and wiring 2
3-1. Installation site (environmental conditions) 2
3-2. Mounting 2
3-3. External dimension and panel cutout 3
3-4. Wiring 3
3-5. Terminal arrangement diagram 4
4. Description of front panel 4
4-1. Names of front panel 4
4-2. Explanation of front panel section 4
5. Description of screens 5
$5-1$. How to move to another screen 5
5-2. Setting Method 5
$5-3$. Power-on and initial screen display 5
5-4. Explanation of each screen 6
(1)Basic screens 6
(2)FIX (constant value control) setting screens 6
(3) Mode 1 screens 7
(4) Mode 2 screens 7
(5) Mode 3 screens 7
(6) Mode 5 screens 8
(7) Mode 9 screens 9
5-5. Measuring range code table 9
6. Supplementary Explanation of Function 9
6-1. Auto return function 9
6-2. Output Soft Start Function 9
6-3. Event Selection Alarm Operation Figure 9
6-4. Event Delay \& Timer function 9
6-5. AT (Auto Tuning) 9
7. Trouble Shooting - 10
7-1. Cause and Treatment of Main Defects - 10
7-2. Cause and Treatment of Error Display $\cdot 10$
8. Numeric value and character display on LED $\cdot 10$
9. Specification $\cdot 10$

Preface

This instruction manual is intended for those who will be involved in wiring，installation， operation and routine maintenance of the MAC10．
This manual describes the care，installation，wiring，function，and proper procedures regarding the operation of MAC10．
Keep this manual on hand while using this device．Please follow the provided guidance．

1．Matters regarding safety

For matters regarding safety，potential damage to equipment and／or facilities and additional instructions are indicated as follows：

OThis mark indicates hazardous conditions that could cause injury or death of personnel． Exercise extreme caution as indicated．

「 \triangle WARNING」

©This mark indicates hazardous conditions that could cause damage to equipment and／or facilities．Exercise extreme caution as indicated．

「ACAUTION」

©This mark indicates additional instructions and／or notes．
「NOTE」

「 \triangle WARNING」

MAC10 is designed for controlling temperature，humidity，and other physical subjects in general industrial facilities．It must not be used in any way that may adversely affect safety，health，or working conditions．

「ACAUTION」

To avoid damage to the connected equipment，facilities or the product itself due to a fault of this instrument，safety countermeasures must be taken before usage，such as proper installation of the fuse and the overheating protection device．No warranty，expressed or implied，is valid in the case of usage without having implemented proper safety countermeasures．

〔AWARNING」

－The $\widehat{\triangle}$ mark on the plate affixed to the instrument：
On the terminal nameplate affixed to the case of your instrument，the \triangle mark is printed． This is to warn you of the risk of electrical shock which may result if the charger is touched while it is energized．
－The external power circuit connected to the power terminal of this instrument must have a means of turning off the power，such as a switch or breaker．Install the switch or breaker adjacent to the instrument in a position which allows it to be operated with ease， and with an indication that it is a means of turming off the power．Use a switch or breaker，which meets the requirements of IEC947．
－Fuse：
Since the instrument does not have a built－in fuse，do not forget to install a fuse in the power circuit to be connected to the power terminal．The fuse should be positioned between the switch or breaker and the instrument and should be attached to the L side of the power terminal．

Fuse Rating：250V AC 0.2 A medium lagged or lagged type．
Use a fuse which meets the requirements of IEC127
－Load voltage／current to be connected to the output terminal and the alarm terminal should be within the rated range．Otherwise，the temperature will rise and shorten the life of the product and／or result in problems with the product．
－Voltage／current that differs from input specification should not be connected to the input terminal．It may shorten the life of the product and／or result in problems with the product．
－This instrument has basic insulation between the power supply and the input－output． When reinforced insulation is needed，the input／output terminals should be connected A：to a device with no exposed chargers，or B：to a device with basic insulation suitable for the highest voltage of power supply and input／output section．
－A signal wire＇s common mode voltage to ground（signal wires other than contact output including power supply and event）should be less than $30 \mathrm{~V} \mathrm{~ms}, 42.4 \mathrm{~V}$ peak，and 60 VDC．

「ACAUTION」

－All the wires for the interior distribution，except for communication and contact output（including power supply and event），should be less than 30 m in length．When the wire＇s length is 30 m or more， or in the case of outdoor wiring，the suitable measure against a lightning surge is required．

2．Introduction

2－1．Check before use

Before using MAC10，please check the model code，the exterior appearance and accessories．Also， make sure that there are no errors，impairs and shortages．
Confirmation of model code：Check that the product you ordered is being delivered properly．
Check the model code of the main body case against the following code table．

Example of model code $\mathbf{M A C 1 0 A}-$ 1	$\frac{\mathbf{M}}{2}$	\mathbf{C}	$\frac{\mathbf{F}-}{4}$	$\underline{\mathbf{2}}$	$\underline{\mathbf{R}}$

Item
1．Series

2．Input
3．Control Output 1
4．Power Supply
5．Event Output

6．Communication

MAC10A－96x96mm size digital controller MAC10B－：48x96mm size digital controller MAC10C－：72×72mm size digital controller MAC10D－：48x48mm size digital controller M：multi，I：current
C：contact，S：voltage pulse，I：current（ $4-20 \mathrm{~mA}$ ），
F－：100～240V（90～264V）AC
N：none，$\quad 1:$ Event Output1（one point）
2：Event Output1，2（two points）
N ：none，R：RS485

Check of accessories
Instruction manual（excerpt edition）： 1 set
$\lceil N O T E 」$ ：Please contact our agencies or business offices if you have any problem． We welcome any kind of inquiry such as defect of the product，shortage of accessory and so on．

2－2．Caution for use

（1）Do not operate the front panel keys with hard or sharp objects．
Do not fail to touch keys lightly with a fingertip．
（2）Wipe gently with a dry rag and avoid using solvents such as thinner．

3．Installation and wiring

3－1．Installation site（environmental conditions）

「 \triangle CAUTION

Do not use this product under the following conditions．
Otherwise，failure，damage and fire may occur．
（1）Where flammable gas，corrosive gas，oil mist or dust generate or grow rife．
（2）Where the temperature is below $0^{\circ} \mathrm{C}$ or above $50^{\circ} \mathrm{C}$
（3）Where the humidity is over $90 \% \mathrm{RH}$ or where condensation occurs．
（4）Where high vibration or impact occurs
（5）Where inductive interference may easily affect the operation．
Or，in the region of strong electric circuit area．
（6）Where waterdrops or direct sunlight exists．
（7）Where the altitude is above $2,000 \mathrm{~m}$ ．

〔NOTE」：The environmental conditions comply with the IEC664． Installation category is II and the pollution degree is 2 ．

3－2．Mounting

（1）Machine the mounting hole by referring to the panel－cut illustration in Section 3－3．
（2）Applicable thickness of the mounting panel is $1.2 \sim 2.8 \mathrm{~mm}$ ．
（3）As this product provides mounting fixture，insert the product into the panel．

3-3. External dimension and panel cutout
MAC10 external dimensions (unit: mm)

MAC10B

MAC10C

MAC10D

MAC10 panel cutout (unit: mm)

MAC10C 72×72size

MAC10D 48×48 size

Note: Proximity attachment by a single hole is possible only in the case of horizontal direction. When an apparatus that was attached in vertical direction is removed, a dedicated detachment tool is required.

3-4. Wiring

「 4 WARNING」

Do not turn on electricity while wiring to avoid an electric shock.
Do not touch a terminal or live part while turning on electricity.
(1) Make sure that wiring operation is properly done in line with a terminal wire diagram of section 3-5. (2) Choose a suitable compensation lead wire in the case of thermocouple input.
(3) In the case of resistance bulb input, resistance value of each lead wire must be less than 5Ω and that of three lead wires must be equal.
(4) Do not wires an input signal line inside of an electric wire pipe or a duct same with the high voltage line.
(5) Shield wiring (single point grounding) is effective against static induction noise.
(6) Wiring twisted atequal short intervals is effective againstelectromagnetic induction noise.

3－5．Terminal arrangement diagram
Terminal arrangement plan of MAC10A and MAC10B

「Note」：If input type is thermocouple or voltage，errors may occur when terminal 11 and terminal 12 terminal are short－circuited

Terminal arrangement plan of MAClOC

「Note」：If input type is themocouple or voltage，errors may occur when terminal 8 and
terminal 9 terminal are short－circuited

Terminal arrangement plan of MAC10D

$\circ 1$
24

【Note」：If input type is thermocouple or voltage，errors may occur when terminal 5 and terminal 6 terminal are short－circuited

4．Description of front panel

4－1 Names of front panel

MAC10A 96x96size front
MAC10C 72×72size front

4－2．Explanation of front panel section

（1）：Display of process value（PV）（red）
Process value and type of setting is displayed on each setting screen．
（2）：Display of set value（SV）（green）
Set value is displayed on each setting screen．
③ ：Monitor LED
（1）RUN monitor LED
RUN（green）

If RUN is performed with operation model screen，and communication，it lights up，and put out by standby．It blinks，if a manual output is chosen in output monitoring screen．
2）Auto tuning operation monitor LED
AT（green）

If AT is chosen in ON，blinks during AT execution．Lights up when AT is on standby，and puts out with AT automatic termination or release
（3）Control output 1 monitor LED OUT（green）
At the time of a contact or a voltage pulse output，the it lights up with ON and lights off with OFF．Lights off with 0% power output，and lights up with 100% power． And blinks in intermediate ratio．
（4）Event output monitors LED
EV1 and EV2（yellow）
Lights up when the allotted event output turns to ON
（4）：Key－switch section
（1）（MENU）key
Press this key to move onto the next screen among the screens．Press（MENU）key for three seconds on the basic screen，then it jumps to the lead screen of Mode 1．Press hand key for three seconds on the lead screen of each Mode screens，then it jumps to the basic screen． Press key for three seconds on the lead screen of FIX，then it jumps to the basic screen．
（2） $\boldsymbol{\nabla}$（DOWN）key
Press $\boldsymbol{\nabla}$（DOWN）key one time，and the shown value decreases by one numerical value．
One time press of ∇ key decreases by one numerical value．By pressing the key continuously，the value as well consecutively decreases．A decimal point of the smallest digit blinks at this time．This shows that a setting change is in progress
（3）Δ（UP）key
Press $\boldsymbol{\Delta}$（UP）key one time，and the shown value increases by one numerical value． By pressing continuously，the value by pressing the key continuously，the value consecutively increases．A decimal point of the smallest digit blinks at this time．This shows that a setting change is in progress．

Supplementary explanation of \triangle key and ∇ key

When you continue pressing up／down keys，and press an opposite key，change in the value becomes 1 stage faster．（When the key is pushed for 4 times，it becomes high－speed．）
（4）EN（ENTRY／REGISTER）key
The setting data changed on each screen is determined（the decimal point of the minimum digit is also lighted off）．
Press ENT key for 3 seconds on the output monitoring screen，then the shift between manual output and automatic output is carried out．
Press the key for 3 seconds on the basic screen，then it shifts to FIX head screen． Push at FIX and each mode screens＇lead screen，then shifts to setting screen．

5. Description of screens

5-1. How to move to another screen

Every time you press the key on a basic screen, it shifts to each screen of the basic screens.

Press the key for 3 seconds on a basic screen, then it shifts to the lead screen of mode 1 screens.
Press the key for 3 seconds on the lead screen of mode $1 \sim 9$ screens, then it shifts to the basic screen
Press the $\boldsymbol{\Delta}$ key on the lead screen of mode 1 screens, then it further advances to mode 2, and mode 3. (Notes: If no corresponding option is found, the mode 4-9 is skipped)
Press the ∇ key on the lead screen of mode 1 screens, then it further advances to mode 9 , and mode 8. (Notes: If no corresponding option is found, the mode 4-9 is skipped)
Press the ENT key on the lead screen of mode $1 \sim 9$ screens, then it shifts to the first setting screen of each screens.
Press the key on the the first setting screen of each screens, then it shifts to the next screen. Every time you press the key, it shifts to the next setting screen

Press the env key for 3 seconds on a basic screen, then it shifts to the lead screen of $\boldsymbol{\sim}$
Press the key for 3 seconds on $\boldsymbol{\sim}$

5-2. Setting Method

- Variables and settings

To change settings, display an appropriate screen and change the setting (value or function) by pressing $\boldsymbol{\Delta} \boldsymbol{\nabla} \boldsymbol{\nabla}$ key, And press the env key (The decimal point of the minimum digit is also lighted off).

- Automatic and Manual output setting

On the output monitor screen of basic screens, you can change the control output from "Automatic" to "Manual", and save its change of setting. Display the output monitor screen, and then press ENT key for three seconds to shift from Automatic to Manual. Then by pressing $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key, you can adjust to the desirable output value. In this case, no need to press Eent key in order to determine the change of setting. Press 式 key for three seconds as well to shift back to Automatic. Excluding when a keylock is OFF, Automatic \Leftrightarrow Manual switchover does not work while STBY and AT are in operation.
Output monitor

5-3. Power-on and initial screen display

At power-on, the display section shows each screen of initial screens for one second , then moves on to the basic screen.

5－4．Explanation of each screen

（1）Basic Screens

Basic Screen
25
0
四 key Linear input With in scaring range
Within SV limiter besides
Process value（PV）is displayed on the upper row as four－digit，and set value（SV）
is displayed on the lower row also as four－digit．（Notes ：hereinafter，
Process value and set value are referred to as＂PV＂and＂SV＂）
Execution SV is displayed and change of setting is possible．

Operation Mode 1 screen

nem key \quad Hール（run）Conduct of control operation

Choose $\boldsymbol{\sim} \boldsymbol{\sim}$ or by key，Decide by ent key，then Monitor LED＇s RUN lights up to start control operation．
Choose 5 にるご by $\boldsymbol{\nabla}$ key，Decide by en key，then Monitor LED＇s RUN lights off and becomes control stop［Output OFF（ 0% ）］conducting．
When measuring range，a unit，scaling，and output characteristics are changed it is initialized and 5 にらら is displayed．

Output 1 monitoring screen
コロ Manual output setting range ： $0.0 \sim 100.0 \%$（within output limiter）
，：200 At the time of automatic output，monitor display only．
ear key Refer to Item 5－2 about automatic \Leftrightarrow manual switchover，and setting method at the time of manual operation．
A manual output is canceled when an operation mode is made into 5 によう．
When a power source is intercepted and re－switched on，it returns to the condition just before intercepting．

Event1 Timer elapsed time monitoring screen

25

1．Displays at the time of Eventl Timer function is enabled，and the current elapsed time （ON period，OFF period，or＂Eng＂）is displayed．
四 key

Event2 Timer elapsed time monitoring screen
25
， 3 Contents are the same with that of an Event1 Timer elapsed time monitoring screen． \downarrow key

FIX－SV No．setting screen

EV1（event 1）operating－point setting screen
Initial value：upper limit absolute value measuring range or Scaling upper limit

Setting range：upper limit absolute value within measuring range or scaling limit lower limit absolute value within measuring range or scaling limit upper limit deviation－ lower limit deviation - Sㅗ～， within upper－lower limit deviation outside upper－lower limit deviation $\boldsymbol{\sim} \sim$ תit

The operating point of the alarm type allotted to EV1 is set up．
 The operation mode of each deviation alarm is $, \boldsymbol{\sim}, \boldsymbol{\sim}$ ．Effective at the time of automatic output．
Each deviation alarm serves as PV＇s deviation to Execution SV．
Event operation other than each deviation alarm is always effective．

EV2（event 2）operating－point setting screen モョ己
－1 Initial value，setting range，contents are the same with EV1
\downarrow 四 key
Latching release screen

ーラ：$:$ Setting range：ーエ゙ー：release EV1
ーランこ releaseEV2
key Fi＿releaseall EVsatatime

On the latching setting screen of each EV mode，$-5!$ No．and $\boldsymbol{F i z} \mathbf{i}$ which chose aro are displayed．If latching is $\boldsymbol{\pi}$ ，once EV is outputted， EV output state is maintained even if $E V$ is in the state of OFF．When EV is in a latching state，decimal point of the minimum digit blinks，and it shows that release of EV is possible．If EN key is pressed， EV is released and a decimal point lights off
However，release is impossible when a state is in EV power range．
Return to basic screen

（2）FIX（constant value control）setting screens

Lead screen of FIX setting screens is displayed when ENT key is pressed for 3 seconds on a basic screen．If ENT key is pressed for 3 seconds on lead screen，it returns to basic screen．

FIX lead screen
Fーム
SI \quad No setting on this screen．
SV1 setting screen
与i゙ ：Initial value ：At the time of sensor input 0
2．linear input time scaling lower limit
Setting range ：sensor input time within measuring range
linear input time within scaling range
Moreover，within limit of SV limiter．
When SV1 is Execution SV，being reflected in basic screen．
Being initialized when measuring range，unit，and scaling are changed．

SV2 ~ 4 setting screen are the same with that of an SV1 setting screen．
\downarrow
Return to FIX lead screen

（3）Mode 1 screens

Mode 1 lead screen							
Modt		Press key for 3 seconds on basic screen，then displayed					
：							
｜${ }^{\text {and } \mathrm{key}}$		No setting on this screen．Press the Eev key，then it shifts to the first setting screen，keylock setting screen．					
Keylock setting screen							
Locil		Initial value ： $\boldsymbol{\sim}$					
orf		Setting range ：$\%$ F，i，2，3，5					
四 key							
：Execution SV（basic screen），Manual output value，and keylock level is possible． \geq Manual output value and key lock level is possible． 3 Only change of a keylock is possible． 5 Change of key lock level and Basic screens are possible．							

SV limiter lower limit setting screen

$$
\begin{aligned}
& \text { Sロー: Initial value : measuring range lower limit } \\
& \text { Setting range : measuring range lower limit value-measuring range upper limit value-1 } \\
& \text { And key } \quad \text { And } \boldsymbol{-} \text { (SV display tum off) } \\
& \text { Lower limit value of set value is set. } \\
& \text { When upper limit value is smaller than lower limit value, the value compulsorily becomes } \\
& \text { lower limit value }+1 \text {. } \\
& \text { When you choose } \boldsymbol{\sigma} \text { :- } \mathbf{-} \text { pressing lower limit value , the } \mathrm{SV} \text { display turn off at } \\
& \text { basic screen. But it will turn on at the setting screen } \\
& \text { SV limiter upper limit value setting screen }
\end{aligned}
$$

（4）Mode 2 screens

Mode 2 lead screen
テーロ゙Press Δ key in model lead screen，or press ∇ key in mode3 lead screen，
\geq then being displayed．
If ewn key is pressed，it shifs to the first setting screen PV offset correction screen．
Emkey
PV offset correction setting screen
$\begin{array}{ll} & \text { Initial value ：0 } \\ & \text { Setting range ：}-500 \sim 500 \text { Digits }\end{array}$
PV gain correction setting screen
$\mathfrak{O B} \quad$ Initial value $: 0.00$
ODO Setting range $: \pm 5.00 \%$
mex key Maximum input value is corrected within limit of $\pm 5.00 \%$ of measuring range． If corrected，inclination of spang changes in straight line which connects zero point and correction maximum value．

PV filter setting screen
$\boldsymbol{P} \boldsymbol{B} \quad \boldsymbol{F} \quad$ Initial value ： 0

$$
\text { Setting range : } 0 \sim 100 \text { seconds }
$$

aew key When input change is violent or noise is overlapped，used in order to ease the influences．
In 0 second setting，filter does not function．
Mesuring range setting screen
Initial value $:$ multi input
Setting range ：Chosen from $5-5$ ．measuring range code table．

NOTE：Suppose that the difference between a lower limit value and upper limit value is 10 or less，or over 10000．In this setting，upper limit value is compulsorily changed into that of +10 or ± 10000 count．Upper limit value cannot be set as lower limit value of +10 count or less，or that of over 10000 count．

Input scaling Decimal point position Setting screen
Initial value：the first place after decimal point（ 0.0 ）
Setting range：no decimal point $0 \sim$ the third place after decimal point (0.000)
｜new key Decimal point position of input scaling is set．
naw key Displays at the time of linear input．
Open thermocouple detection Setting screen
ニー＿ー Initial value：H
$\rightarrow \quad$ Setting range ： H, L
$\downarrow \begin{aligned} & \text { Direction of the open termocouple detection（High or low）．} \\ & \downarrow \text { mex key } \quad \text { Displays at the time of Thermocouple input．}\end{aligned}$
Return to mode 2 lead screen．
（5）Mode 3 screens
Mode 3 lead screen
テローロ No setting on this screen．
3．If en key is pressed，it shifts to the first setting screen，output 1 proportional band ENT key setting screen．In this screens，PID settings in output 1 and soft start of output 1 ，and proportional period output characteristics are set up．

Output 1 PID proportional－band（P）setting screen

$$
\begin{aligned}
\boldsymbol{O} & \text { Initial value : } 3.0 \% \\
\text { Sin } & \text { Setting range : OFF, } 0.1 \sim 999.9 \%
\end{aligned}
$$

nand key
When performing auto tuning，no necessity for a setting basically．
If OFF is chosen，it becomes ON－OFF（two positions）operation．

Output 1 PID Integral time（I）setting screen
Initial value： 120 seconds
Setting range： $\mathrm{OFF}, 1 \sim 6000$ seconds

Nax key

When performing auto tuning，no necessity for a setting basically．
This screen is not displayed at the time of ON－OFF operation．
Becomes P operation or PD operation in $\mathrm{I}=\mathrm{OFF}$ setting．

Output 1 PID Derivative time（D）setting screen
$\boldsymbol{\sigma} \quad$ Initial value： 30 second
コー～Setting range： $0 \mathrm{FF}, 1 \sim 3600$ seconds
${ }^{\text {nand }}$ key
When performing auto tuning，no necessity for a setting basically．
This screen is not displayed at the time of ON－OFF operation．
Becomes P operation or PI operation in $\mathrm{D}=\mathrm{OFF}$ setting．

Return to mode 3 lead screen
（6）Mode 5 screens
Mode 5 screens is the setup screens of event option．Not displayed when option is not added． Mode 5 lead screen
テローが No setting on this screen．
5 Press $\mathbb{E N T}$ key，it shifts to the first setting screen，event 1 operation－mode setting screen．

Event 1 operation－mode setting screen
E：＿\quad Initial value ：ran

Event type character table

Character	Type
non	No allotment
189	Upper limit absolute value alarm
18	Lower limit absolute value alarm
50	Scale over alarm
Has	Maximum deviation alarm
－\square^{\prime}	Minimum deviation alarm
－a	Within deviation alarm
日家	Without deviation alarm
\cdots	RUN signal

※ Being initialized if measuring range，scaling，and unit are changed．
※ Deviation alarm is possible to output at the time of RUN＋AUTO． In other events，output is always possible．
Event 1 differential－gap setting screen

Event 1 standby operation setting screen
$\varepsilon: S$

$$
\begin{aligned}
& \text { ofr Initial value : } \boldsymbol{\sim} \boldsymbol{F} \boldsymbol{F} \\
& \text { naw key Setting range : } \boldsymbol{\sigma} \boldsymbol{F} \boldsymbol{F}, \boldsymbol{\sim}, \boldsymbol{Z} \\
& \text { of: }: \text { No standby operation, }: \text { : standby-operation only at the time of a power-on. } \\
& \text { Z: Standby-operation in the following cases: At the time of power-on, }
\end{aligned}
$$

When each alarm＇s operating point is changed，
When deviation alarm＇s SV is performed，
When RUN／STBY is switched，
When AUTOMAN is switched．

Change in measuring range，scaling，unit，and the event 1 mode make it initialize．
Event 1 Delay mode setting screen

｜ham key Event1 delay mode ：Delay，Timer1，Timer2
Refer to 6－4Event Delay \＆Timer function．

Change in measuring range，scaling，unit，and the event 1 mode make it initialize．
Event1 ON Delay time setting screen

Event 1 Timer unit setting screen
Initial value ：Seting range ：

Event 1 output characteristics setting screen
$E: B \quad$ Initial value ： $\boldsymbol{\sim}$
TO Setting range：ハールールール

Not displayed when event 1 mode is $\boldsymbol{\pi ロ ー ロ}$
Note ：If $\boldsymbol{\pi} \boldsymbol{\sim}$ switched on，and turns to OFF in event output range．

Event 2 setting screens

Following contents are the same with that of an Eventl setting screens．
\downarrow

Return to mode 5 lead screen
（7）Mode 9 screens
A group of Mode 9 screens are communication of RS－485 option setting screens．
When the option is not added，these screens are not displayed．
For details，please refer to the instruction manual for communication interface．

Input type			$\begin{aligned} & \text { Code } \\ & \hline \boldsymbol{\sim}: \end{aligned}$	Measureing Range	
			Unit：${ }^{\circ} \mathrm{C}$		
	Thernmo－ couple	K		$0 \sim 1300$	
		K		\cdots	$-50.0 \sim 999.9$
		J	＇；	$0 \sim 600$	
		J	B＇	$0.0 \sim 600.0$	
	Resistance Bulb Pt100		ρ ；	$-100.0 \sim 200.0$	
			P	$-100 \sim 200$	
			\bigcirc	－199．9～ 300.0	
			－	－200～ 300	
	Volatage（m	$0 \sim 50$	\therefore ：	Scaling Range ：－1999～9999 Digit	
Current（mA）		$4 \sim 20$	， $78:$	Span ：10～10000 Digit	
		$0 \sim 20$	，\％	Change of decimal point＇s position is possible （no decimal pont， $0.1,0.01,0.001$ ）	

Thermocouple K，J：JIS／IEC Resistance bulb Pt100：JIS／IEC
Setup of factory shipment is Multi input：Thermocouple $:-\boldsymbol{\sim}:\left(0 \sim 1300^{\circ} \mathrm{C}\right)$
Currentinput：4－20mA $\approx: \subset:(0.0 \sim 100.0)$

6．Supplementary Explanation of Function

6－1．Auto return function

When there is no key operation 3 minutes or more，on the screen except for basic screen and each monitoring screen，screen automatically shifts to basic screen．

6－2．Output Soft Start Function

This is the function to increase the control output gradually with set－up time at the time of power－on， STBY \rightarrow RUN，and normal return from scale over．This is effective for controlling the excessive current to loads，such as a heater．
Soft－start functions in the following conditions ：
－At the time of the power－on in automatic operation， $\mathrm{STBY} \rightarrow \mathrm{RUN}$ ，and normal return from scale over
－Output 1 setting is not ON－OFF operation（Setup of proportional band (P) is other than OFF）
－Soft starting time is not OFF

6－3．Event Selection Alarm Operation Figure

The figure of alarm operation figure allotted to event $1 \sim 2$ is shown．
Δ ：SV $\quad \boldsymbol{\Delta}$ or \longleftrightarrow ：Alarm operating point setting value
$\rightarrow \leftarrow$ ：Differential gap

H：Upper limit absolute value alarm \quad ： \boldsymbol{A} ：Lower limit absolute value alarm

－iロ́：Upper limit deviation alarm
L $\boldsymbol{\Omega}$ ：Lower limit deviation alarm

OB：Without deviation alarm

5ロ：Scale over

6－4．Event Delay \＆Timer function
（1）Delay mode

（2）Timer mode

※Difference of Timer 1 and Timer 2

Event status
vent relay output

6－5．AT（Auto Tuning）

－If AT is performed by FIX（constant value control），AT monitor LED blinks and light is put out by termination or intermediate release
－When auto tuning is ended in inclination step or chosen all PID（s），it is in standby state until one pattern is completed．Then lights up，then puts out when one pattern is completed
－When AT is not completed within 1 pattern，AT conducting is released when one pattern is completed．

7.Trouble Shooting

7-1. Cause and Treatment of Main Defects

Contents of defects	Cause	Treatment
Error message display	Refer to "7-2 cause and treatment of error display".	Refer to "7-2 cause and treatment of error display".
PV display is not normal	Mismatch of instrument and input. Fault in the wiring.	Type code, check of specification. Check of wiring.
Display disappeared and does not operate	Power is not supplied. Abnormality of instrument.	Check of a power supply (voltage of terminal, switch, fuse, wiring). Check of instrument, repair, exchange.
Key operation impossible	Keylocked. Abnormality of instrument.	Release of keylock. Check of instrument, repair, exchange.

7-2. Cause and Treatment of Error Display
(1) Abnormality Display of Measurement Input

8. Numeric value and character display on LED

Numeric values

Alphabetical characters

9. Specification

Display

Display accuracy
Accuracy maintenance range Display range

MAC10A (96x96 size)	PV red 7 segment LED	4 figure (height of character about 20mm)
	SV green 7 segment LED	4 figure (height of character about 13mm)
MAC10B (48x96 size)	PV red 7 segment LED	4 figure (height of character about 12mm)
	SV green 7 segment LED	4 figure (height of character about 9 mm)
MAC10C (72×72 size)	PV red 7 segment LED	4 figure (height of character about 16 mm)
	SV green 7 segment LED	4 figure (height of character about 16 mm)
MAC10D (48x48 size)	PV red 7 segment LED	4 figure (height of character about 12mm)
	SV green 7 segment LED	4 figure (height of character about 9 mm)
Status display	RUN (green), AT (green), OUT 1 (green), EV1 (yellow), EV2 (yellow)	
$\pm(0.5 \% \mathrm{FS}+1$ digit) CJ errors not included		
$23 \pm 5^{\circ} \mathrm{C}$		
$-10 \% \sim 110 \%$ of measuring range, but $0 \sim 1300{ }^{\circ} \mathrm{C}$ of TC(K type) is $-30 \sim 1320^{\circ} \mathrm{C},-50.0 \sim 999.9^{\circ} \mathrm{C}$ of TC(K		

Display resolution
Input scaling

Changes with measuring range and scaling
Possible at the time of linear(mV, current) input -1999~9999
(span $10 \sim 10000$ count, decimal point position no decimal point, $0.1,0.01,0.001$)

Setting
Setting system
SV Setting range
Setting lock

SV setting limiter
Unit setting

Input
Sampling period
PV filter
PV offset compensation
PV gain correction
-Thermocouple
Input resistance
External resistance tolerance level
Influence of lead-wire resistance
Burnout
Measuring range
Compensation accuracy
of reference junction

Tracking of a reference junction

- Resistance bulb

Stipulated current
Lead wire resistance tolerance level
Influence of lead-wire

Measuring range

- Voltage (mV)

Input resistance
Input voltage range
-Current input (mA)
Reception resistance
Input range

Control

Control system
Proportional band (P)
ON-OFF Differential-gap (DFL,DFH)
Integration Time (I)
Derivative time (D)
Manual Reset (MR)
Output limiter (OL, OH)
Soft start
Proportional period
Control output characteristic
Manual output
-Control output 1
Contact
Voltage pulse (SSR drive)
Current

By four front keys (Hew $\boldsymbol{\nabla}$ ENT)
Same with measuring range
Communication and key seting (five levels)

Operations	Level	Lock content
 Key setting	OFF	No lock
	1	Possible to change Execution SV, Manual output value, and keylock level.
	2	Possible to change Manual output value and keylock level.
	3	Possible to change keylock level.
	5	Possible to change basic screens and keylock level.

(Setting lock level 4 is unavailable)
Same with measuring range (lower limit $<$ upper limit)
At the time of sensor input, ${ }^{\circ} \mathrm{C}$
0.25 second
$0 \sim 100$ second
± 500 unit
$\pm 5.00 \%$

$500 \mathrm{k} \Omega$ or more

100Ω or less
$0.23 \mu \mathrm{~V} / \Omega$ (up scale), $-0.34 \mu \mathrm{~V} / \Omega$ (down scale) (Typical value)
Standard equipment (up scale or down scale)
Refer to 5-5 measuring range code table.
$\pm 2^{\circ} \mathrm{C}$ (ambient temperature $18 \sim 28^{\circ} \mathrm{C}$) At the time of vertical plural proximity attachment $\pm 3^{\circ} \mathrm{C}$
$\pm 3^{\circ} \mathrm{C}$ (ambient temperature $0 \sim 50^{\circ} \mathrm{C}$) At the time of vertical plural proximity attachment $\pm 4^{\circ} \mathrm{C}$
Several minutes after power-on, accuracy is not guaranteed. Reaches the accuracy level within 10 minutes after power-on.
Below the ambient temperature of $0.5^{\circ} \mathrm{C} / \mathrm{min}$, relative compensation accuracy of reference junction $\pm 1^{\circ} \mathrm{C}$

Approx. 0.25 mA
5Ω or less per wire (Resistance of three lines should be equal)
5Ω or less per wire $0.2 \% \mathrm{FS}$
10Ω or less per wire $0.5 \% \mathrm{FS}$
20Ω or less per wire $1.0 \% \mathrm{FS}$
Refer to 5-5 measuring range code table.
$500 \mathrm{k} \Omega$ or more
Refer to 5-5 measuring range code table.
60Ω or less (built-in)
Refer to 5-5 measuring range code table.

PID control with an auto tuning function, or ON-OFF operation
OFF and $0.1 \sim 999.9 \%$ of measuring range (ON-OFF operation by OFF setting)
$1 \sim 999$ unit
OFF, $1 \sim 6000$ seconds (PD operation by OFF setting)
OFF, $1 \sim 3600$ seconds (PI operation by OFF setup) $\} P$ operation if both I and D are OFF.
$\pm 50.0 \%$ (effective when set as I = OFF)
$0.0 \sim 100.0 \%(\mathrm{OL}<\mathrm{OH})$ (set resolution 0.1)
OFF, $0.5 \sim 120.0$ seconds (set resolution 0.5)
$0.5 \sim 120.0$ seconds (set resolution 0.5)
Possible to choose either RA (heating) or DA (cooling) $0.0 \sim 100.0 \%$ (set resolution 0.1)

Normal open (1a) 250VAC / 30VDC 2A (resistance load) $13 \pm 2 \mathrm{~V}$ DC MAX 20 mA
$4-20 \mathrm{~mA} \mathrm{DC}$ load resistance 500Ω or less, Display accuracy $\pm 1 \%$ (accuracy maintenance range $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$),
Load regulation $\pm 0.2 \%$, resolution approx. $1 / 10000$

Event 1, 2 (Option)
Output rating
Kind of event

Standby operation

Latching

Differential gap
Output characteristic
-Delay function
Delay time
Time accuracy
-Timer function
ON time
OFF time
Unit of timer
Time accuracy
Break in the timer operation

Communication (Option)

Communicative type
Communication system
Synchro system
Communication distance
Communication Speed
Data format
Slave address
Master mode function
Parameter preservation mode
Error detection

Flow control
Delay
Communication code
Protocol
Termination resistance
Number of connection

Contact Normal open (1a) $250 \mathrm{VAC} / 30 \mathrm{VDC} 2 \mathrm{~A}$ (resistance load, EV1 \cdot EV2 and common)
Refer to following table.

Function	Character	Note
No allotment	man	
Upper limit absolute value Alarm	18	
Lower limit absolute value alarm	18	
Scale over alarm	50	HHHH, LLLL, B---- Operates, when displayed.
Upper limit deviation value Alarm	-	
Lower limit deviation value alarm	- \square^{\prime}	
Within deviation alarm	-®	
Without deviation alarm	日6	
RUN signal	r rorr	Operates during FIX in operation.

Upper limit absolute value alarm, Lower limit absolute value alarm within measuring range
Upper limit deviation alarm, Lower limit deviation alarm $\quad-1999 \sim 2000$ unit
Within deviation alarm, without deviation alarm $0 \sim 2000$ unit
OFF No standby operation
1 Only at the Time of Power-on, standby operation
2 At the Time of power switch on, each alarm operating point is changed, deviation alarm's execution SV is changed, and RUN/STBY is switched over standby operation, at the time of AUTO/MAN switchover
Alarm operation maintenance function
(Release is done by key operation or power OFF. In the case of release by power OFF, all alarms are called off simultaneously)
1~999 unit
Choose from normal open (NO) or normal closing (NC).
If NC is chosen and power is turned on, relay becomes ON within 1.5 second and becomes OFF at event power range.

OFF, $1 \sim 8000$ second
$\pm(0.67 \%$ of Setup time +1 second $)$
$1 \sim 600$
$0 \sim 600$
minute or second
$\pm(0.67 \%$ of Setup time +1 second $)$
Acceptable at event turns off (Timer 1 mode) or unacceptable(Timer 2 mode)

EIA standard RS-485
Two-wire system half duplex multi-drops (bus) system
Asynchronous system
Maximum 500 m (depends on conditions)
9600 or 19200 bps
Start 1bit, Stop 1 or 2 bits, Data length 8 bits, Parity without, odd number, even number
$1 ~ 255$
None
Choose from RAM, MIX and EEP mode.
SHIMAX Standard Choose from None, ADD, complement of ADD +2, exclusive OR
MODBUS RTU CRC-16
MODBUS ACII LRC
None
$1 \sim 250 \mathrm{~ms}$ (resolution 1 ms)
ASCII code or binary code
SHIMAX Standard or MODBUS ASCII, MODBUS RTU protocol
120Ω (external connection)
Maximum 32 sets (depends on conditions, host is included)

General specification		
Data retention	Non-volatile memory (EEPROM)	
Temporary dead time	No influence within 0.02 second 100% dip	
Use environmental condition		
Temperature	$0 \sim 50^{\circ} \mathrm{C}$	
Humidity	Below 90\%RH (no dew condensation)	
Height	Altitude of 2000 m or less	
Category	II	
Contamination degree	2	
Storage temperature Conditions	$-20 \sim 65{ }^{\circ} \mathrm{C}$	
Supply voltage	$100 \sim 240 \mathrm{~V}(90 \sim 264 \mathrm{~V}) \mathrm{AC} 50 / 60 \mathrm{~Hz}$	
Power consumption	$100 \sim 240 \mathrm{~V}$ AC Maximum 9VA	
Insulated class	Class I apparatus	
Input noise removal ratio	Normal 40dB or higher	
Impulse-proof noise	Power-source Normal 100ns/ $1 \mu \mathrm{~s} \pm 1500 \mathrm{~V}$	
Insulation resistance	Between input/output terminal and power supply terminal Between communication and other input/output terminals	500 V DC $20 \mathrm{M} \Omega$ or higher
		500 V DC $20 \mathrm{M} \Omega$ or higher
Withstand voltage	Between input/output terminal and power supply terminal 1800V AC 1 minute	
	Between communication and other input/output terminals $\quad 500 \mathrm{~V}$ AC 1 minute	
	Between control output1(Voltage pulse or current) and other input/output terminals $\quad 500 \mathrm{~V}$ AC 1 minute	
Case material	PPO or PPE	
Case color	Light gray	
Outside dimension	MAC10A H96 \times W96 \times D69mm (depth in panel 65mm)	
	MACl0C $\mathrm{H} 72 \times$ W $72 \times$ D69 mm (depth in panel 65 mm)	
	MAC10D $\mathrm{H} 48 \times$ W $48 \times$ D 66 mm (depth in panel 62 mm)	
Thickness of applied panel	$1.2 \sim 2.8 \mathrm{~mm}$	
Size of attachment hole	Individually attachment Horizo	plural proximity attachment ($\mathrm{N}=\mathrm{n}$
	MAC10A H92×W92mm W $96 \times$	mm H92mm
	MAC10B H92×W45mm W(48×	mm H92mm
	MAC10C H68×W68mm W $772 \times$	mm H68mm
	MAC10D H45 W 45 mm W $(48 \times$	mm H45mm
Mass	MAC10A About 220g	
	MAC10B About 160g	
	MAC10C About 160g	
	MAC10D About 120g	
Isolation	Between event output 1 and 2 is not insulated. Others are basic insulation or functional insulation. Refer to the following insulation block chart	
	Insulation block chart	
	Power supply	
		Control output (Contact)
	Measurement input	Control output (Voltage pulse / Electric current)
	Communication	Event output 1
		Event output 2

